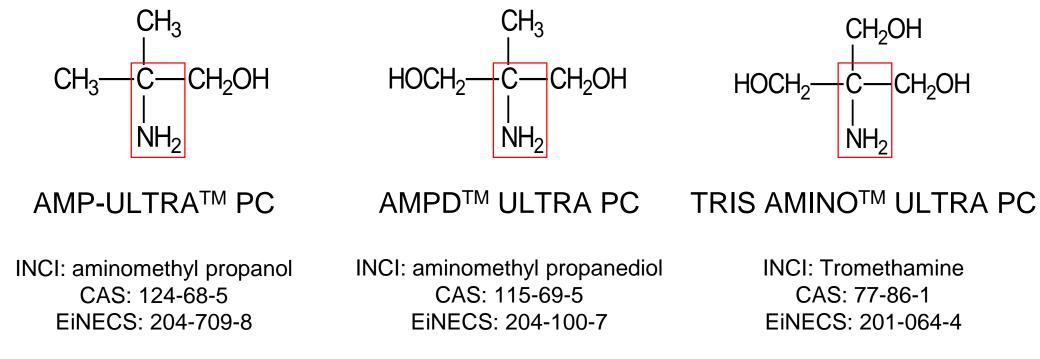


Product & Chemistry Overview

Product & Chemistry Overview


Chemistry	Structure	Mw	рКа	Product	Appearance	FP/MP, ⁰C
AMP TM	CH ₃			AMP-ULTRA [™] PC 1000	Anhydrous solid	30
INCI: Aminomethyl propanol	CH ₃ —Ċ—CH ₂ OH NH ₂	89.14	9.72	AMP-ULTRA™ PC 2000	Low viscositiy liquid (5% water)	13
CAS: 124-68-5 EiNECs: 204-709-8	Primary amine Tertiary carbon			AMP-ULTRA™ PC 3000	Low viscosity liquid (11% water)	-3
AMPD [™] INCI: Aminomethyl propanediol CAS: 115-69-5 EINECS: 204-100-7	CH ₃ HOCH ₂ —C—CH ₂ OH NH ₂ Primary amine Tertiary carbon	105.14	8.76	AMPD™ ULTRA PC	Crystalline solid	100
TRIS AMINO [™] INCI: Tromethamine CAS: 77-86-1 EINECS: 201-064-4	СH ₂ OH HOCH ₂ —C—CH ₂ OH NH ₂ Primary amine Tertiary carbon	121.14	8.03	TRIS AMINO™ ULTRA PC	Crystalline solid	165

Key Functionalities At A Glance

- Tertiary carbon linked to N atom \rightarrow chemical & colour stability \rightarrow prevent nitrosamine formation
- High pKa value \rightarrow quick neutralization + formulation stability at desired pH
- Wide range of base strength (with pH buffering)
- Confers stability to formulations regardless of high salt / high ethanol systems •
- Enhances preservative systems

Globally Compliant

- •Minimum Purity 99%
- •Maximum secondary amine content 0.5%
- •Maximum nitrosamine content 50 µg/kg (50 ppb)
- Stored in nitrite-free containers
- Certified on COA

Globally Compliant

- European Cosmetics Regulation 1223/2009 (replacing European Cosmetics Directive 76/768/EEC and its latest amendments)
- Brazil ANVISA Mercosur Resolution on Cosmetics and Personal Care **Products**
- The Ministry of Health (MOH) of the People's Republic of China Hygienic Standards for Cosmetics (2007 version)
- KOREA: A KFDA revision of the regulations on cosmetic raw materials (2010-99)
- The 2008 ASEAN Cosmetics Directive (Annex updated Feb-2011)

Globally Compliant

- REACH-registered
- Compliant with global chemical control inventories
 - ✓ USA TSCA
 - ✓ Canada DSL
 - ✓ EU EINECS
 - ✓ China IECSC
 - ✓ Taiwan

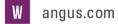
- ✓ Japan ENCS
- ✓ Korea KECI
- ✓ Philippines PICCS
- ✓ Australia AICS
- ✓ New Zealand NZIOC

Consumer Friendly Chemistry

- Reduces risk of nitrosamine formation
- Globally compliant
- Stringent quality control and certification process
- Compliant chemistry to help formulate products for worldwide distribution

AMP-ULTRA[™] PC

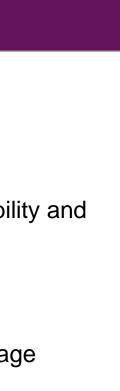
Target	Applications	Benefits
Hair styling	Hair styling gels / Creams / Sprays / Mousses	 Very low dosage requirement (w/w) Efficient fatty acid and resin Good buffering capacity Odourless in formulations Improves product performances such
Cleansers	Soap-based cleansing products Shampoos / Facial cleansers / Body cleansers/ Hand sanitizers	 Improves product performances such clarity, and washability Does not contribute to nitrosamine for Excellent safety profile Globally compliant Corrosion inhibitor
Skin Care	Skin creams / lotions	 Improves soap base stability at lowe Enables rich, dense, and stable foan products



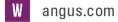
ch as stability,

formation

er pH am in cleansing



AMPD[™] ULTRA PC


Target	Applications	Benefits
Hypoallergenic products	Facecream / Eyecream	 Low dosage requirement (w/w) Efficient fatty acid and resin neutralisation Good buffering capacity Odourless in formulations Improves product performances such as stabiling elements
Colour cosmetics	Face area : Makeup bases / BB, CC creams / Foundation Eye area : Mascaras / Eye liners	 clarity Does not contribute to nitrosamine formation Excellent safety profile Globally compliant Aids in pigment dispersion to enhance coverage Improves product shelf life, e.g., mascara

TRIS AMINOTM ULTRA PC

Target	Applications	Benefits
Suncare	Sunscreen lotions / Creams / Gels / Sprays	 Low dosage requirement (w/w) Efficient fatty acid, resin, and sunscreen active
Sensitive skin	Facial creams / Eye care creams / Gels / Skin creams and lotions	 Good buffering capacity at physiological pH Odourless in formulations Improves product performances such as stabili Enhances efficacy of preservative systems Does not contribute to nitrosamine formation
Odour Control	Deodorant sticks / Roll-ons / Wipes / Sprays	 Excellent safety profile Globally compliant Aids in pigment dispersion at pH ≤ 7 to enhanc Efficient odour scavenging at neutral pH

e neutralisation

ility

nce coverage

W angus.com

Sunscreen Application

Aids Nano TiO2 Dispersion

TRIS AMINO UPC pH 10.4

TEA pH 10.2 AMP UPC 2000 pH 11.5

Max pH After 24 hours

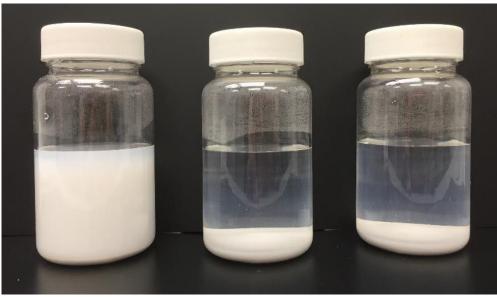
Aids Nano TiO2 Dispersion

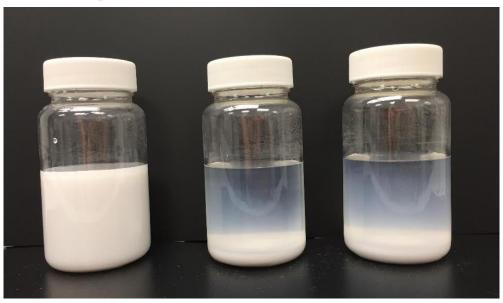
TEA

TRIS AMINO UPC

AMP UPC 2000

pH 7 After 24 hours


Aids Nano TiO₂ Dispersion


TEA

TRIS AMINO UPC

pH 5 After 3 hours

TEA

TRIS AMINO UPC

WE MAKE THE BEST PERFORM BETTER.

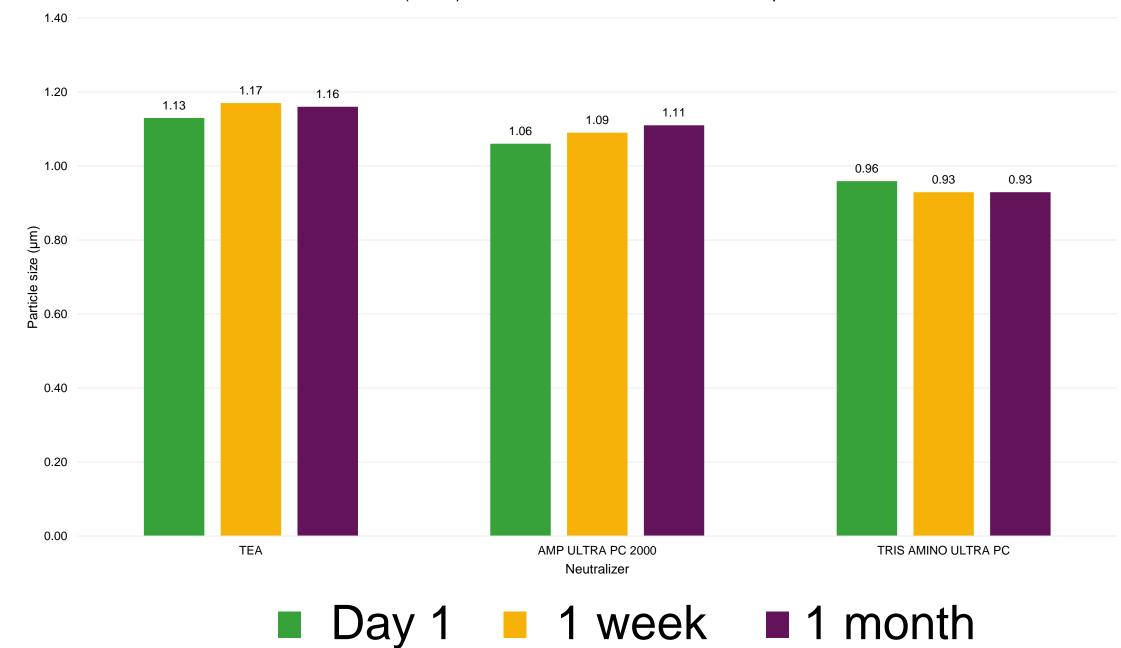
angus.com

AMP UPC 2000

Basic Sunscreen @ pH 7

			TEA	AMP UPC 2000	TRIS A
Phase	Trade Name	INCI Name	%, w/w	% w/w	% w/w
	DI-Water	Water	58.21	58.33	58.18
~	Disodium EDTA	Disodium EDTA	0.05	0.05	0.05
A	Carbopol Ultrez 30	Carbomer	0.20	0.20	0.20
	Propylene Glycol	Propylene Glycol	3.00	3.00	3.00
	Chemonic OE-20 Ethoxylated Alcohol	Oleth-20	3.00	3.00	3.00
	Isopropyl myristate	Isopropyl myristate	11.00	11.00	11.00
В	Tween 80	Polysorbate 80	1.50	1.50	1.50
	TRIsatin	Glyceryl Stearate	1.50	1.50	1.50
	Stearic Acid	Stearic Acid	2.00	2.00	2.00
	Element 14 PDMS 100	Dimethicone	6.00	6.00	6.00
	MT-100WP (15nm)	Titanium Dioxide (Hydrophilic)	8.00	8.00	8.00
С	SFE 839	Cyclopentasiloxane (and) Dimethicone/Vinyl Dimethicone Crosspolymer	5.00	5.00	5.00
D	Neutralizer	-	0.44	0.32	0.47
Ε	Preservative		0.10	0.10	0.10
		Total	100.00	100.00	100.00

WE MAKE THE BEST PERFORM BETTER.


AMINO UPC

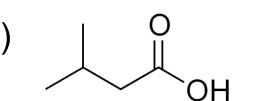
W angus.com

Sunscreen Formulated at pH 7 – Particle Size

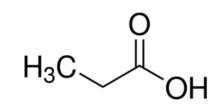
Particle size (Mode) of formulated sunscreen at room temperature

Value for Sunscreen

- Reduce risk of nitrosamine formation
- High safety profile
- Nano TiO₂ dispersion is aided by TRIS AMINO at pH < 7
 - Enables mild pH sunscreen that is ideal for skin care products
 - Enhanced dispersion can help with skin coverage
- Sunblock formulated with TRIS AMINO at pH 7 showed particle sizes smaller than TEA
- Expected better coverage and UV absorption
- TRIS AMINO is the best choice to enable PBSA to be incorporated into formulations
- Balances pH and dosage requirements
- PBSA is a water-based chemical UV absorber of choice due to superior safety profile versus other organic filters

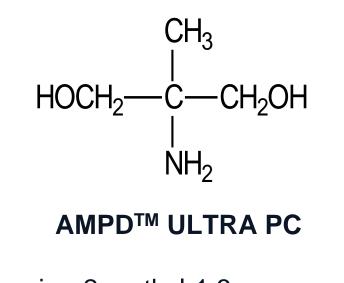



Odour Control Application



Typical Unpleasant Odors

- 2-nonenal
 - Unsaturated aldehyde
 - Associated with human body odour alterations
- 3-methylbutanoic acid (isovaleric acid)
 - Major component of unpleasant foot odour
 - Produced by skin bacteria metabolising leucine
- Propionic acid
 - · Present in many sweat samples.
 - Breakdown product of some amino acids by propionibacteria which thrive in the ducts of adolescent and adult sebaceous glands.
 - Chemically similar to acetic acid vinegar-like smell



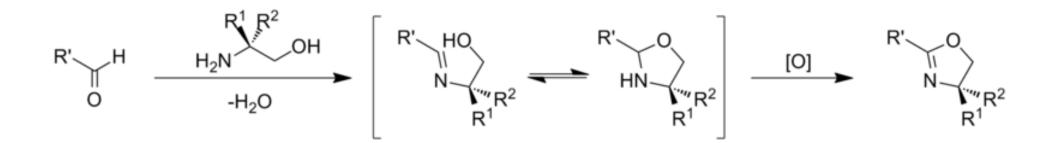
ANGUS Aminoalcohols as Actives

- High performance
- Only multifunctional primary aminoalcohols to capture aldehydes and fatty acids
- New opportunities for home care and personal care markets

2-amino-2-methyl-1,3-propanediol CAS: 115-69-5

TRIS AMINO[™] ULTRA PC

Tris(hydroxymethyl)aminomethane CAS: 77-86-1

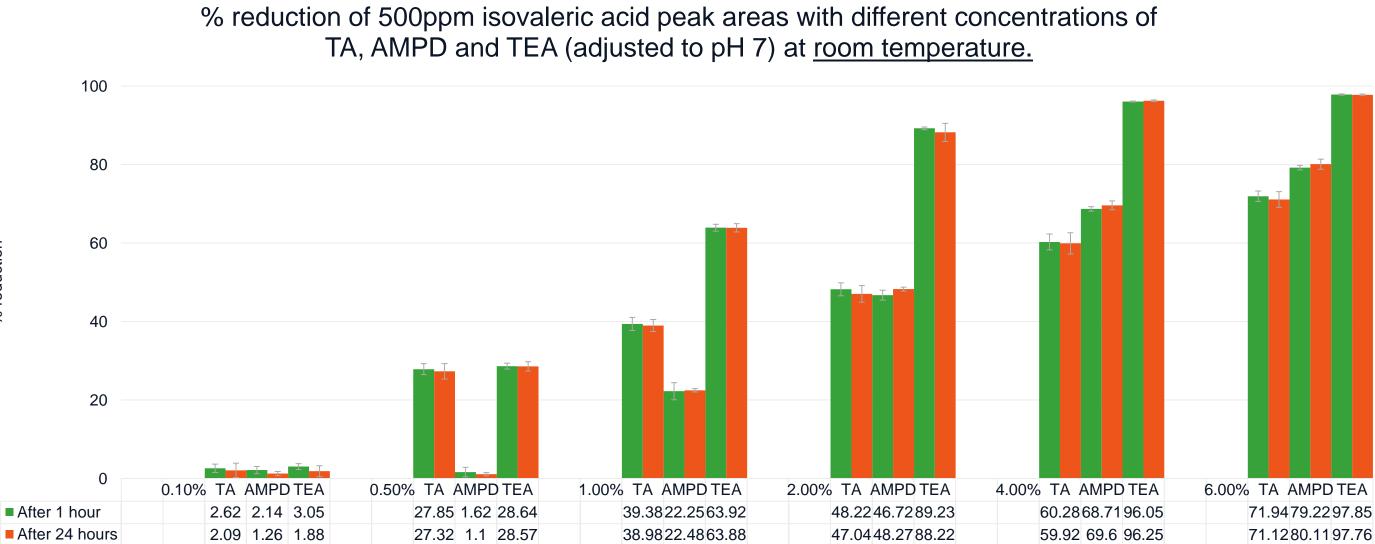


Proposed Reaction Mechanisms

Weak acid – weak base reaction

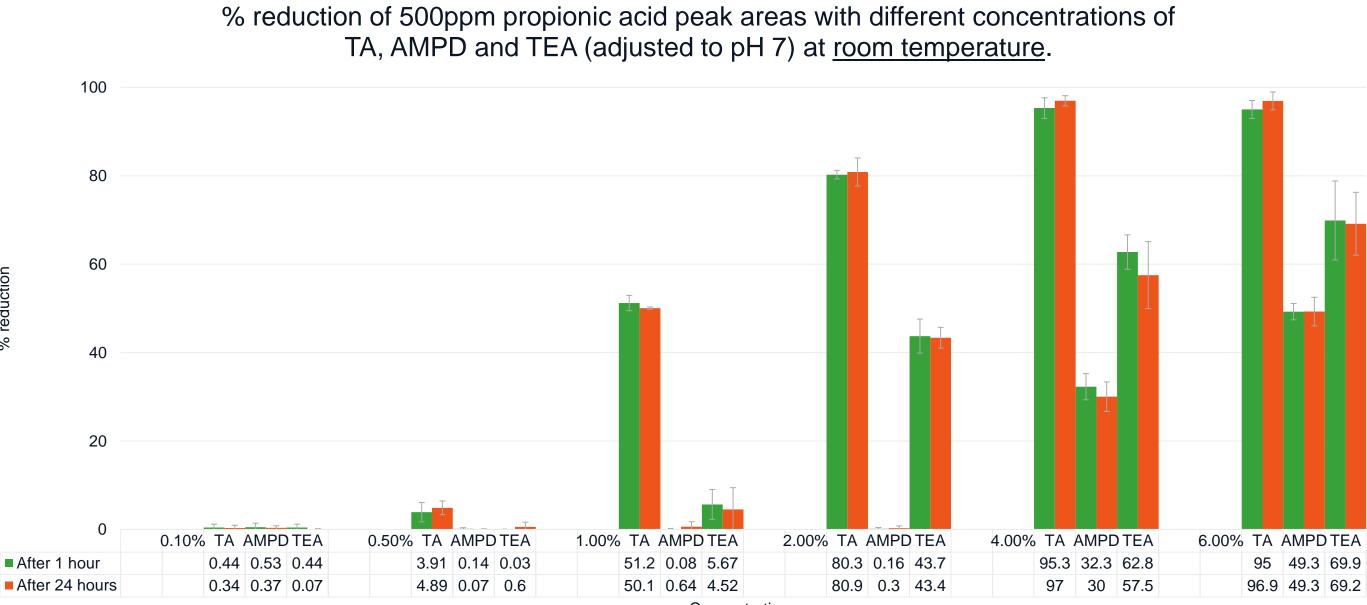
$$RNH_2 + RCOOH \longrightarrow RNH_3^+ + RCOO^+$$

Reacting with an aldehyde to form imines or oxazolidines



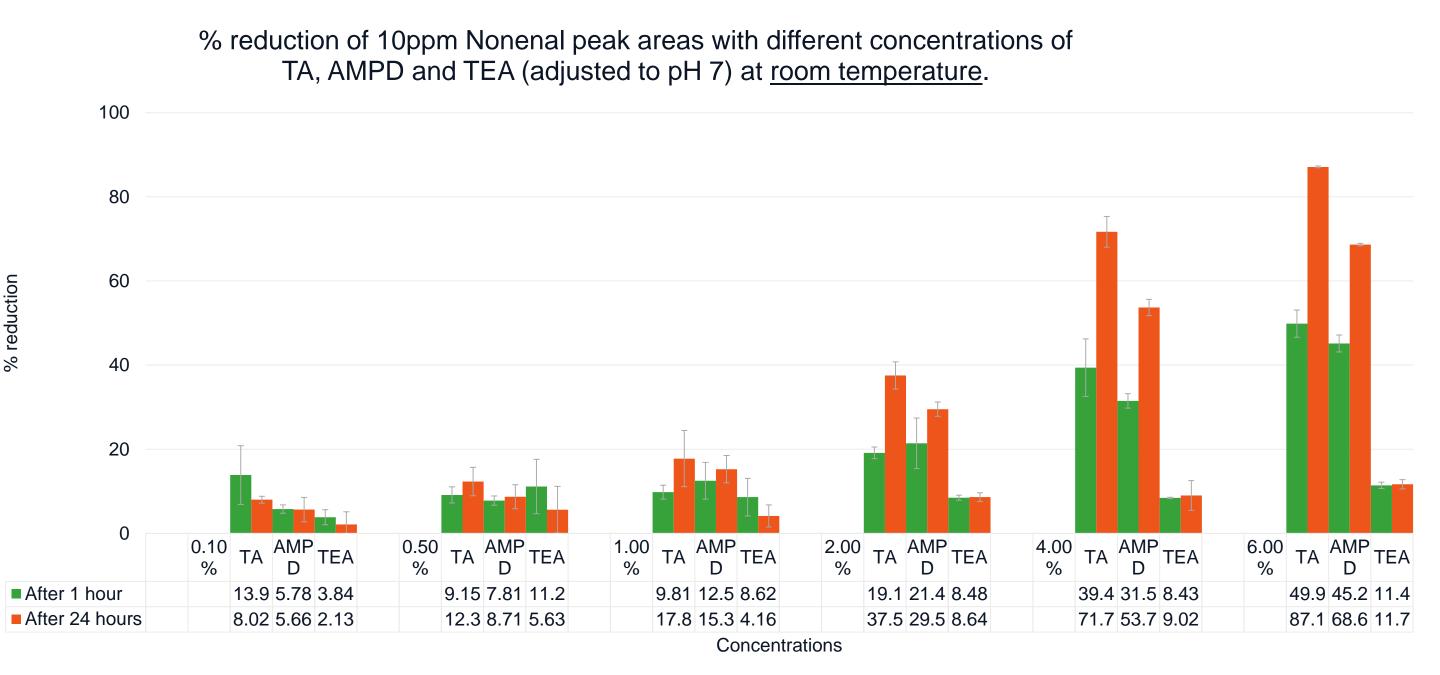
WE MAKE THE BEST PERFORM BETTER.


Neutralisation of Isovaleric Acid

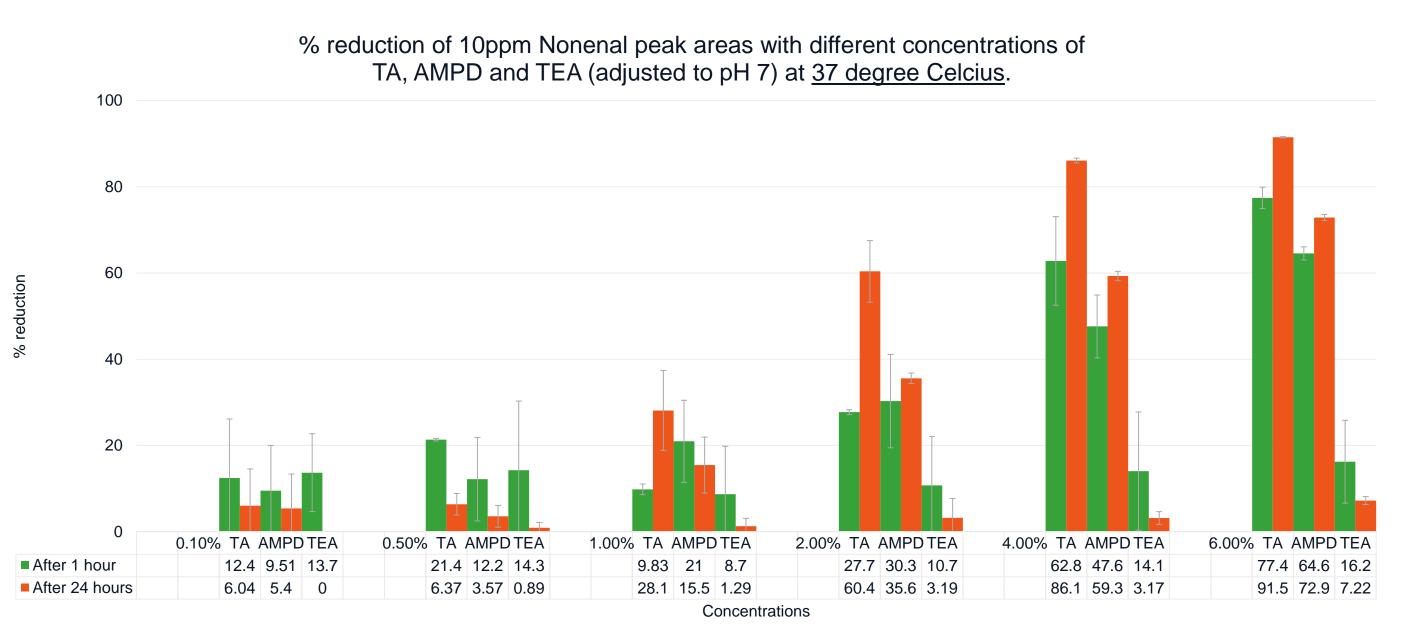

Concentrations

% reduction

Neutralisation of Propionic Acid


Concentrations

% reduction


Neutralisation of 2-Nonenal

Neutralisation of 2-Nonenal

Overview

Chemistry	Structure	Reaction with Isovaleric Acid	Reaction with <u>Propionic Acid</u>	Reaction with <u>2-Nonenal</u>	Safety Profile	Score
TRIS AMINO™	$\begin{array}{c} CH_2OH\\ HOCH_2 & -\\ HOCH_2 & -\\ C & -\\ CH_2OH\\ NH_2 \end{array}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{\sqrt{\sqrt{1}}}$	√√√ <u>Proven safe</u> in multiple applications including pharmaceuticals	11
AMPD™	$\begin{array}{c} CH_3\\ I\\ HOCH_2 & -\!$	\checkmark	\checkmark	$\sqrt{\sqrt{1}}$	√√√ <u>Proven safe</u> in near mucosal surfaces products	7
TEA	HO N OH	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{\sqrt{1}}$	X	X Possible stable nitrosamine formation	5

W angus.com

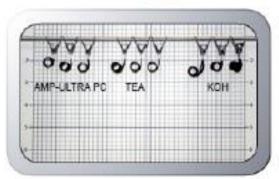
Value for Odour Control

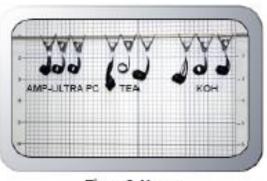
- Reduce risk of nitrosamine formation
- High safety profile
- Scavenges odour compounds such as 2-nonenal, propionic acid, and isovaleric acid
- Easy to formulate

Hair Styling Application

Typical Formulations

Hair Spray Formulatio	n	Hair Gel Formulation		
Ingredient	wt%	Phase 1	wt%	
Hair Fixative Polymer	6	DI Water AMP-ULTRA [™] PC 2000	56.45 0.5	
AMP-ULTRATM PC 2000	1.126	Phase 2		
Ethanol(SDA 40-B)	53-58	DI Water PVP K-90	40 2	
Propellant	35-40	Neolene PE AMP-ULTRA [™] PC 2000	0.6 0.35	
		Total AMP-ULTRA [™] PC 2000 Adjus	100 st to reach p H=7	



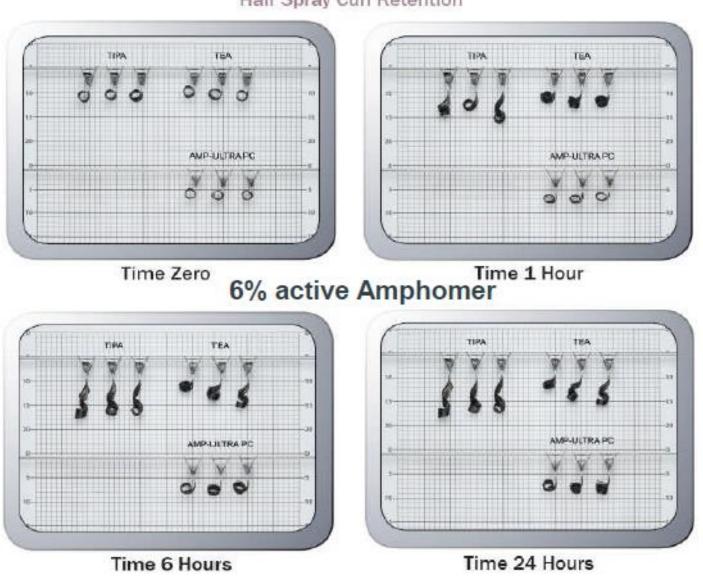

Superior Hair Gel Holding Strength

Time Zero

Time 1 Hour

Time 3 Hours

- Tested at 30 °C, 90% relative humidity
- PVP resin neutralized with AMP outperforms PVP resin neutralized with TEA and KOH
- KOH-PVP resin fails after 1 h and TEA-PVP resin fails after 3 h
- Hair curls hold for at least 3 h at high temperature and humidity with AMP-PVP resin



Superior Hair Spray Holding Strength

Hair Spray Curl Retention

- Tested at 30 °C, 90% relative humidity
- Amphomer resin neutralized with AMP outperforms amphomer resin neutralized with TEA and TIPA
- Hair curls holds for at least 24 h at high temperature and humidity

Excellent Hair Washability

AMP-ULTRA[™] PC

TEA

TIPA

- Hair tresses were treated with 6% neutralized polymer solution (hairspray)
- Dried and washed for 8 cycles to simulate frequent use
- Hair spray with AMP-neutralized resin sample displayed excellent washability
- No polymer buildup optimized neutralization for increased washability
- Hair spray with TIPA and TEA-neutralized resin resulted in white flaky residue on the hair.

Hydrocarbon Compatibility

- Compatible with hydrocarbon propellant
- Good formulation clarity and stability
- Helps in anti-corrosion function in aerosol products – critical for safety of spray cans

Value for Hairstyling

- Reduce risk of nitrosamine formation
- High safety profile
- Provides superior styling and holding strength for hair gels and hair sprays
- Stable neutralisation to enable washability no residue and tackiness
- Compatible with hydrocarbon propellants
- Prevents corrosion of aerosol cans

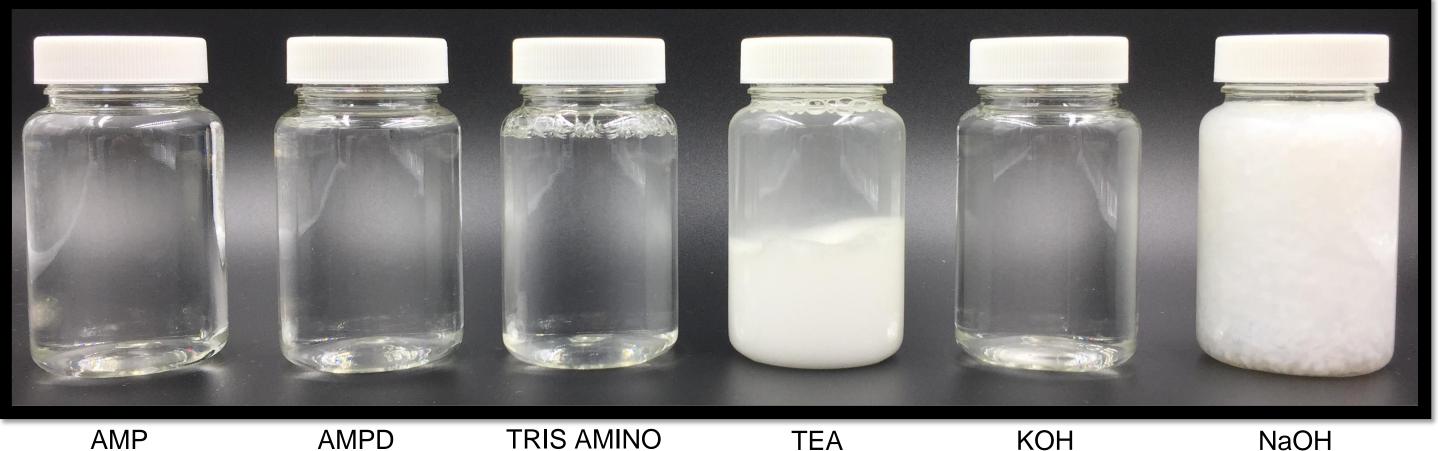
Cleansing Application

Cleansing Foam Formulation (100% Fatty Acid Neutralisation)

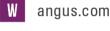
Phase	Trade Name	CTFA / INCI Name	AMP UPC (95.5%) w/w %	TRIS AMINC UPC w/w %) TEA (99.6%) w/w %	AMPD UPC w/w %	KOH (85.5%) w/w %	NaOH (99.9%) w/w %
	Stearic acid (98.6%)	Octadecanoic Acid	0.67	0.67	0.67	0.67	0.67	0.67
А	Lauric acid (99.3%)	Dodecanoic Acid	2.67	2.67	2.67	2.67	2.67	2.67
	Myristic acid (99.6%)	Tetradecanoic Acid	6.00	6.00	6.00	6.00	6.00	6.00
	Disodium EDTA	EDTA Na2	0.05	0.05	0.05	0.05	0.05	0.05
	Neutralizer		3.89	5.05	6.25	4.39	2.73	1.50
В	Glycerin 99%	1,2,3-Propanetriol	2.00	2.00	2.00	2.00	2.00	2.00
	Butylene Glycol	1,3 Butanediol	6.67	6.67	6.67	6.67	6.67	6.67
	DI Water	Water	72.55	71.39	70.19	72.05	73.71	74.94
0	SOFTAZOLINE CH-R	Sodium Cocoamphoacetate	2.00	2.00	2.00	2.00	2.00	2.00
С	SOFTAZOLINE LHL	Sodium Lauroamphoacetate	2.00	2.00	2.00	2.00	2.00	2.00
D	Hydrolite 6	1,2 Hexandiol	1.50	1.50	1.50	1.50	1.50	1.50
		Total	100.00	100.00	100.00	100.00	100.00	100.00

Fatty acids neutralised with neutralisers at ratio 1:1.

WE MAKE THE BEST PERFORM BETTER.

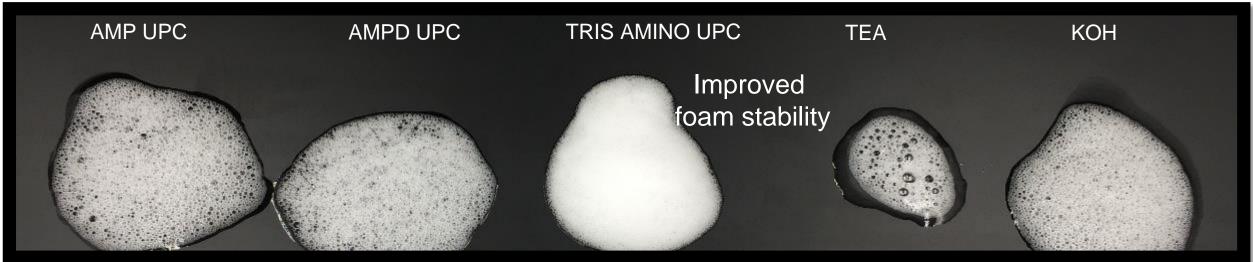


Cleansing Foam (100% Neutralisation)



UPC UPC UPC ULTRA PCTM aminoalcohols enable formulation of cleansers with high clarity

NaOH

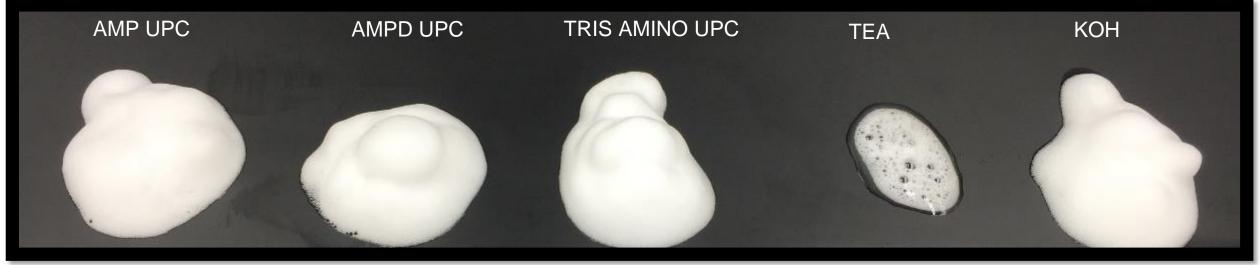


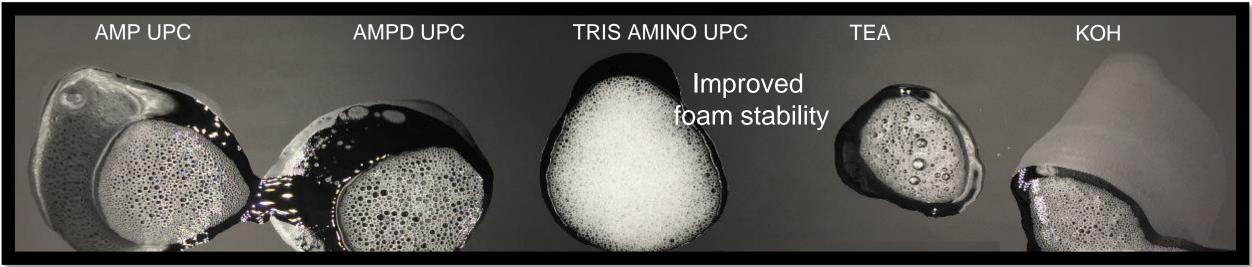
Foam Breakability (100% Neutralisation)

Initial

After 1 hour

WE MAKE THE BEST PERFORM BETTER.

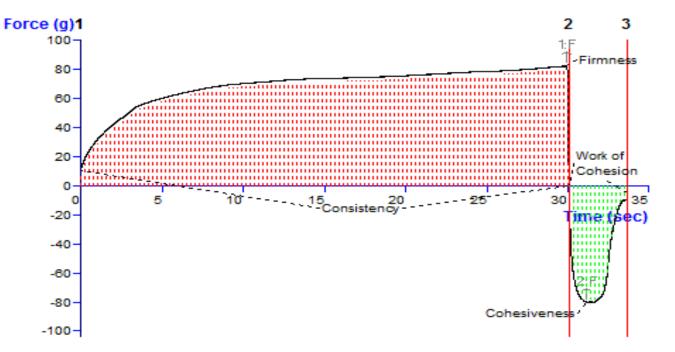




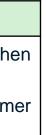
Foam Breakability (100% Neutralisation)

Initial

After 3 hours


WE MAKE THE BEST PERFORM BETTER.

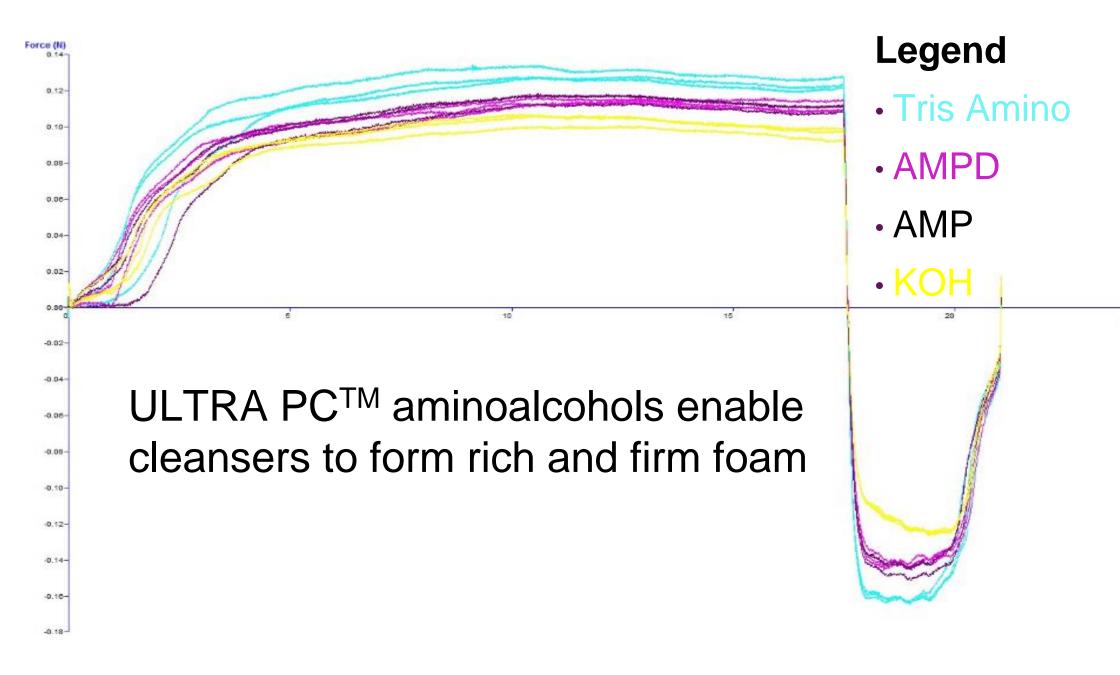
Testing Foam Firmness Using Back Extrusion Test


This test analyses the firmness of the foams generated by the cleanser formulations.

An example of a force-time graph generated by a back extrusion test

Textural Parameter	Instrumental Definition	Physical Definition	Sensory Correlation
Firmness / N	Positive Peak Force	Amount of force required to press down the sample	 How soft/hard the sample is who being pressed The higher the value, the firm the foam

WE MAKE THE BEST PERFORM BETTER



Foam Firmness (100% Neutralisation)

25 Time (sec)

Summary of Data (100% Neutralisation)

Neutraliser	рН	Viscosity (cPs) LVT-2, 60rpm	Foam Firmness Force (N)	Surface Tension ¹ (mN/m)	Hazen / APHA
TEA	7.83	25	NA – Formulation Unstable	NA – Formulation Unstable	247
TRIS AMINO UPC	8.05	11	0.125	26.16	11
AMP UPC	8.70	10	0.111	29.65	10
AMPD UPC	8.32	10	0.112	28.60	11
КОН	9.48	8	0.097	30.19	7
NaOH	NA	NA	NA	NA	NA

¹Lower surface tension \rightarrow improved foam formation and cleansing

 ULTRA PC aminoalcohols enable formulation of low pH cleansers that can form rich, dense, and firm foam.

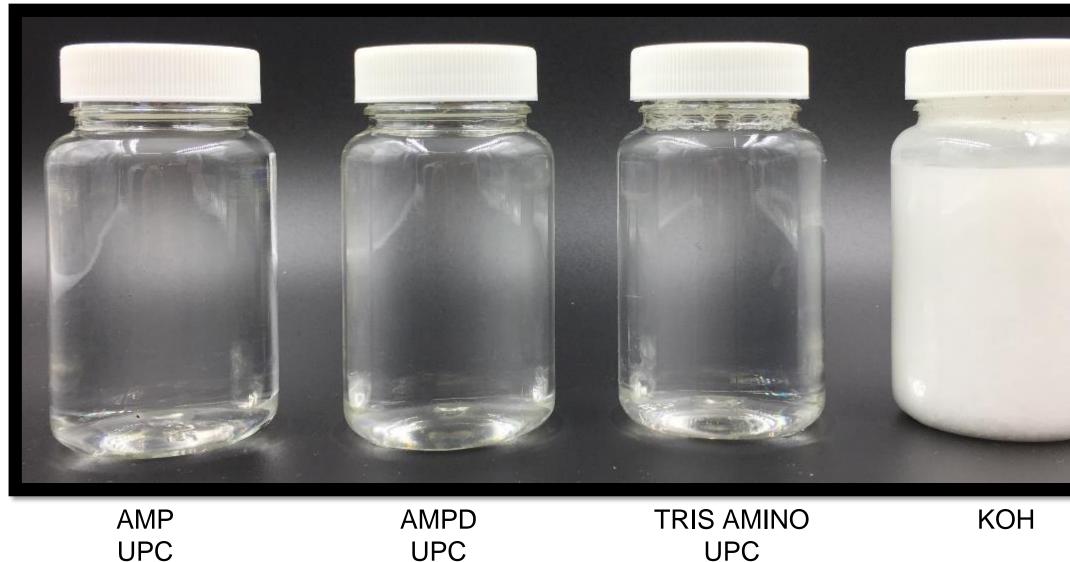
Summary (100% Neutralisation)

Neutralization at 100%	рН	Viscosity	Foam Firmness	Surface Tension	Cleanser appearance/ stability	Foam stability	Hazen/ APHA	Safety & Toxicity Profile	Total score
TEA	$\checkmark\checkmark\checkmark$	×	×	×	×	×	×	× Possible stable nitrosamine formation	3
TRIS AMINO UPC	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{\sqrt{\sqrt{1}}}$	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark\checkmark$	$\checkmark\checkmark\checkmark$	$\checkmark\checkmark\checkmark$	$\checkmark\checkmark$	✓√√ <u>Proven safe</u> in multiple applications including pharmaceuticals	23
AMP UPC	\checkmark	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark$	$\checkmark \checkmark$	$\checkmark\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark \checkmark$	$\checkmark \checkmark \checkmark$	18
AMPD UPC	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	✓√√ <u>Proven safe</u> in near mucosal surfaces products	19
КОН	×	$\checkmark\checkmark\checkmark$	✓	✓	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark$	~ ~ ~	✓✓ Moderate hazard as known for organ system toxicity (non- reproductive); Irritation (skin, eyes, or lungs)	15
NaOH	×	×	×	×	×	×	×	 ✓✓ Moderate hazard as known for organ system toxicity (non-reproductive) ; Irritation (skin, eyes, or lungs) 	2

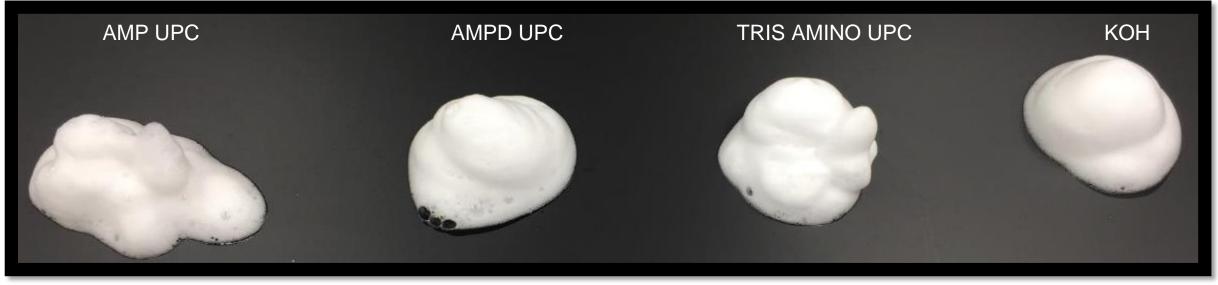
- TRIS AMINO ULTRA PC best overall choice for formulating foaming cleansers ٠
- Balanced pH, good foam strength, feel, and stability. ٠

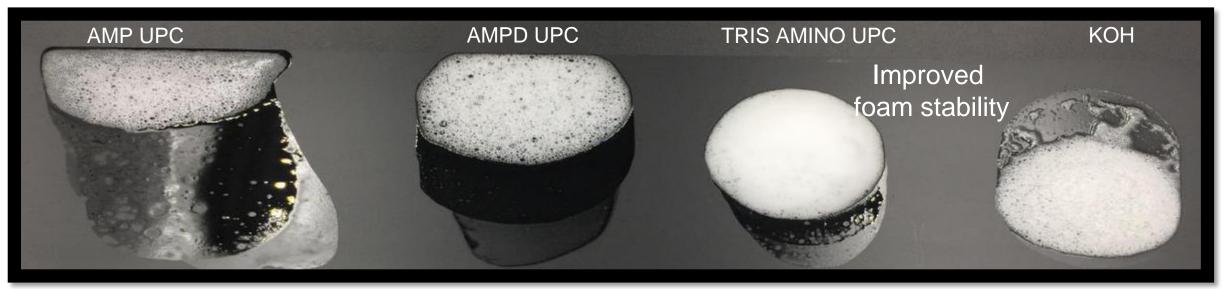
Cleansing Foam Formulation (90% Fatty Acids Neutralisation)

Phase	Trade Name	CTFA / INCI Name	AMP UPC (95.5%) w/w %	TRIS AMINO UPC w/w %	AMPD UPC w/w %	KOH (85.5%) w/w %
	Stearic acid (98.6%)	Octadecanoic Acid	0.67	0.67	0.67	0.67
А	Lauric acid (99.3%)	Dodecanoic Acid	2.67	2.67	2.67	2.67
	Myristic acid (99.6%)	Tetradecanoic Acid	6.00	6.00	6.00	6.00
	Disodium EDTA	EDTA Na2	0.05	0.05	0.05	0.05
	Neutralizer		3.50	4.55	3.95	2.46
В	Glycerin 99%	1,2,3-Propanetriol	2.00	2.00	2.00	2.00
	Butylene Glycol	1,3 Butanediol	6.67	6.67	6.67	6.67
	DI Water	Water	72.94	71.89	72.49	73.98
0	SOFTAZOLINE CH-R	Sodium Cocoamphoacetate	2.00	2.00	2.00	2.00
С	SOFTAZOLINE LHL	Sodium Lauroamphoacetate	2.00	2.00	2.00	2.00
D	Hydrolite 6	1,2 Hexandiol	1.50	1.50	1.50	1.50
		Total	100.00	100.00	100.00	100.00


• Fatty acids neutralized with neutralizers at ratio 1:0.9.

Cleansing Foam (90% Neutralised)



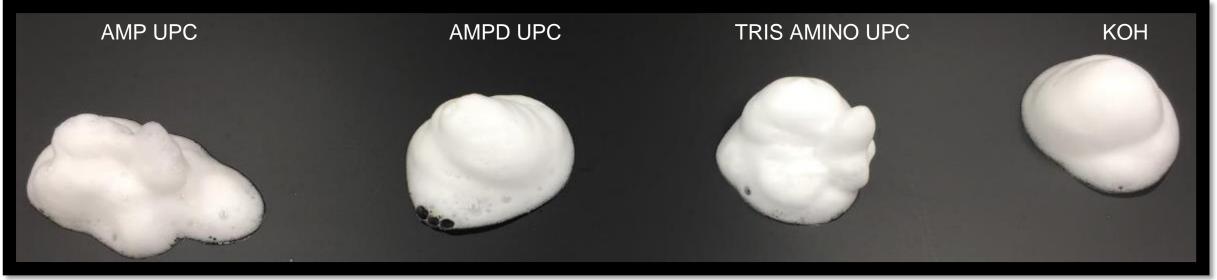


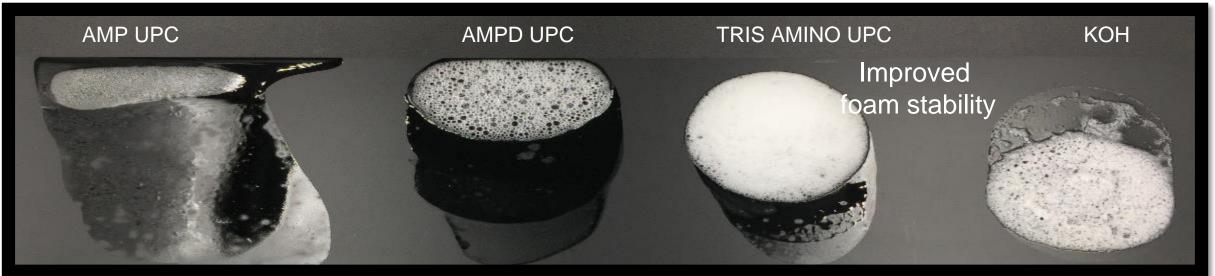
Foam Breakability (90% Neutralisation)

Initial

After 1 hour

WE MAKE THE BEST PERFORM BETTER.

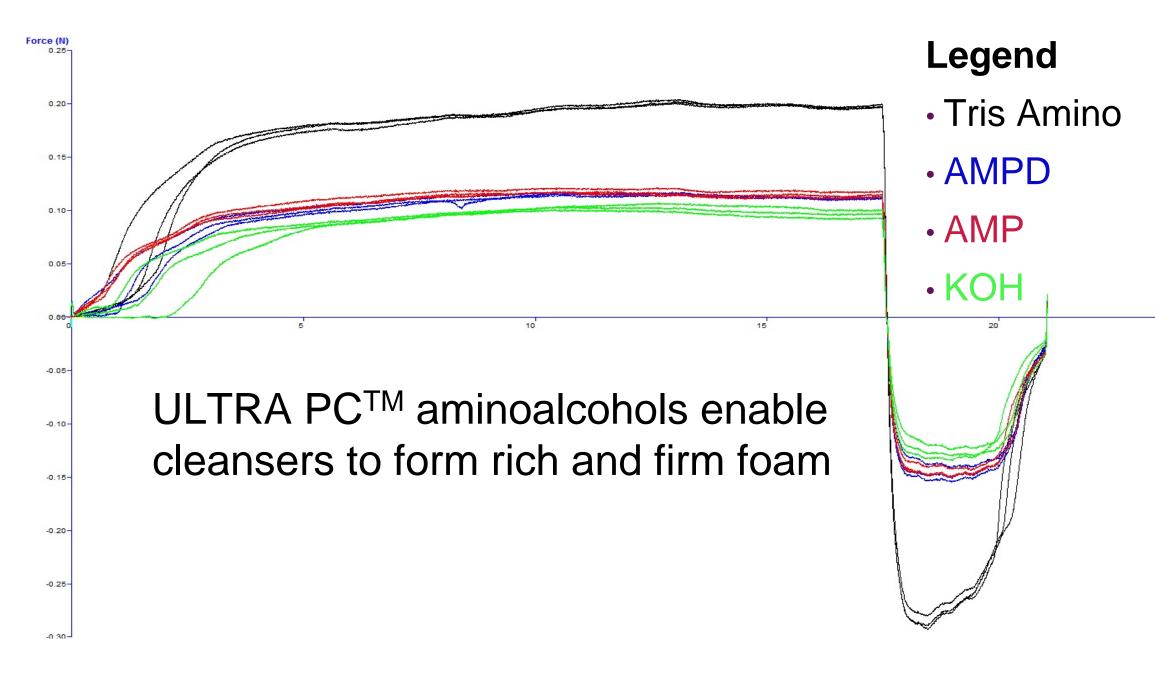




Foam Breakability (90% Neutralisation)

Initial

After 2 hours


WE MAKE THE BEST PERFORM BETTER.

Foam Firmness (90% Neutralisation)

25 Time (sec)

Summary of Data (90% Neutralisation)

Neutralizer	рН	Viscosity (cPs) LVT-2, 60rpm	Foam Firmness Force (N)	Surface Tension ¹ (mN/m)	Hazen/ APHA
TRIS AMINO UPC	7.95	13	0.199	24.04	11
AMP UPC	8.20	14	0.116	27.90	12
AMPD UPC	8.13	13	0.112	27.12	13
КОН	8.97	13	0.097	28.62	448

¹Lower surface tension \rightarrow improved foam and cleansing

ULTRA PC aminoalcohols enable formulation of low pH cleansers that can ulletform rich, dense, and firm foam.

Summary (90% Neutralisation)

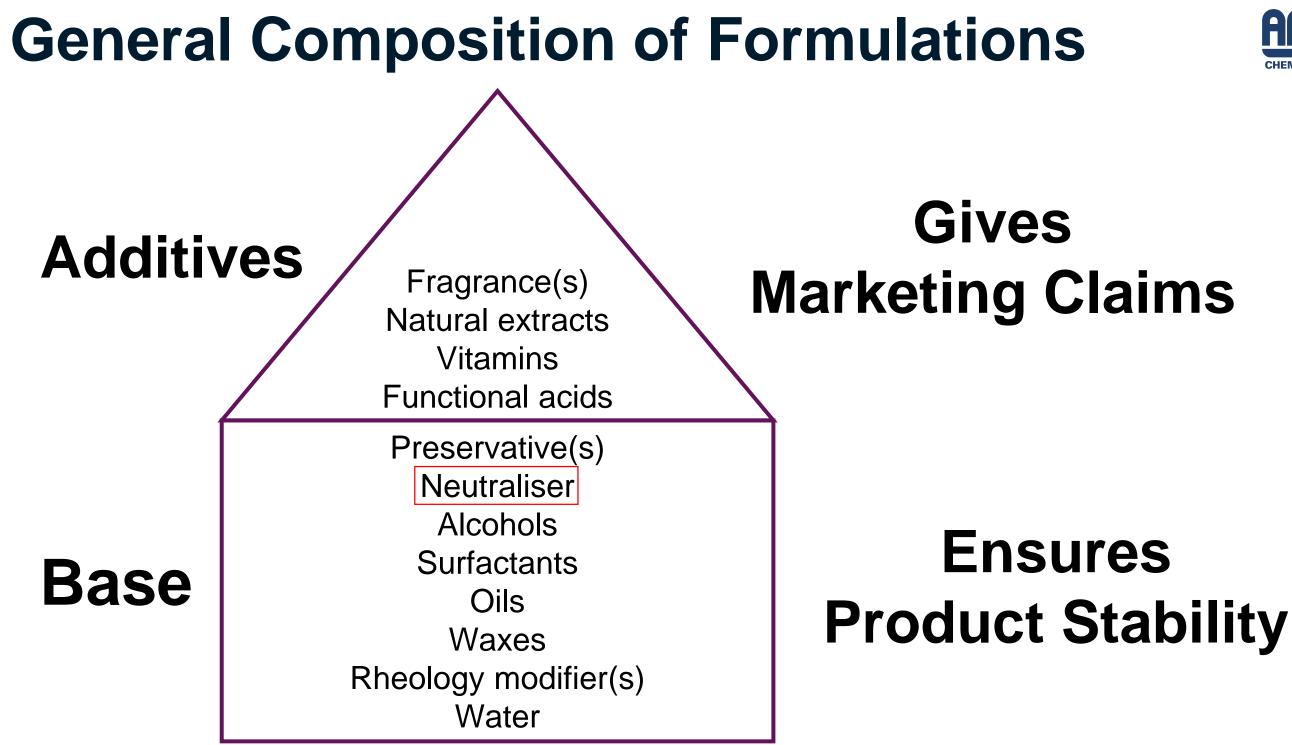
Neutralisation at 90%	рН	Viscosity	Foam Firmness	Surface Tension	Cleanser appearance/ stability	Foan stabili
TRIS AMINO UPC	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$
AMP UPC	$\checkmark\checkmark$	$\checkmark\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	\checkmark
AMPD UPC	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark$
КОН	×	$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark\checkmark$	×	×

TRIS AMINO ULTRA PC best overall choice for formulating foaming cleansers

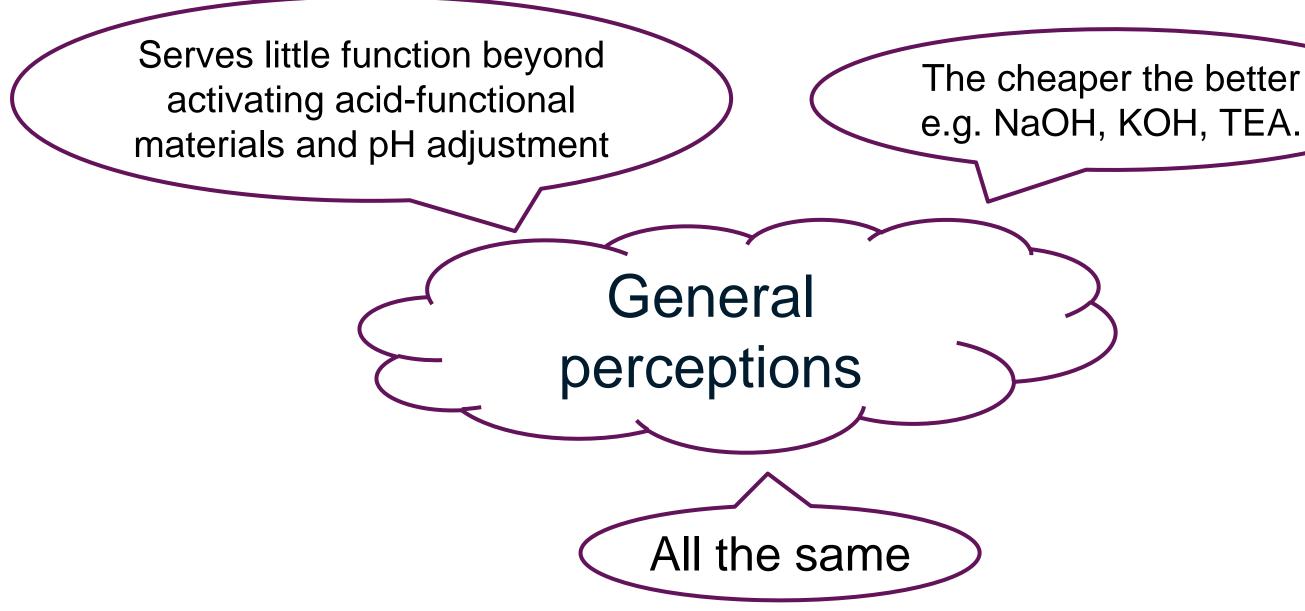
Balanced pH, good foam strength, feel, and stability.

Value in Cleansers

- Reduce risk of nitrosamine formation
- High safety profile
- Enable formulation of cleansers with high clarity
- Cleansers have much lower pH mild on skin
- Foam generated are rich, dense, firm, and stable



Skin & Body Care Application



Neutraliser

56

Carbomer

0.5%

Effect of Neutraliser on Salt Tolerance

Neutralisers Studied

Triethanolamine (TEA) NaOH KOH Aminomethyl Propanol (AMP) Aminomethyl Propanediol (AMPD) Tromethamine (Tris)

pH Adjusted to pH 7

Storage at room temperature and at 50 °C Rheological analyses at initial, 1 month, and 3 months

Salt Disruption

0.5% NaCl

WE MAKE THE BEST PERFORM BETTER

Neutralisation Ratios

Neutraliser	Neutraliser : Carbom Ratio to Achieve pH 7
Aminomethyl Propanol (AMP)	0.90 : 1.00
Aminomethyl Propanediol (AMPD)	1.00 : 1.00
Tromethamine (Tris)	1.21 : 1.00
Triethanolamine (TEA)	1.50 : 1.00
KOH (18%)	2.97 : 1.00
NaOH (18%)	2.12 : 1.00

W angus.com

Rheological Analysis: Rotational Test

Room Temperature Samples

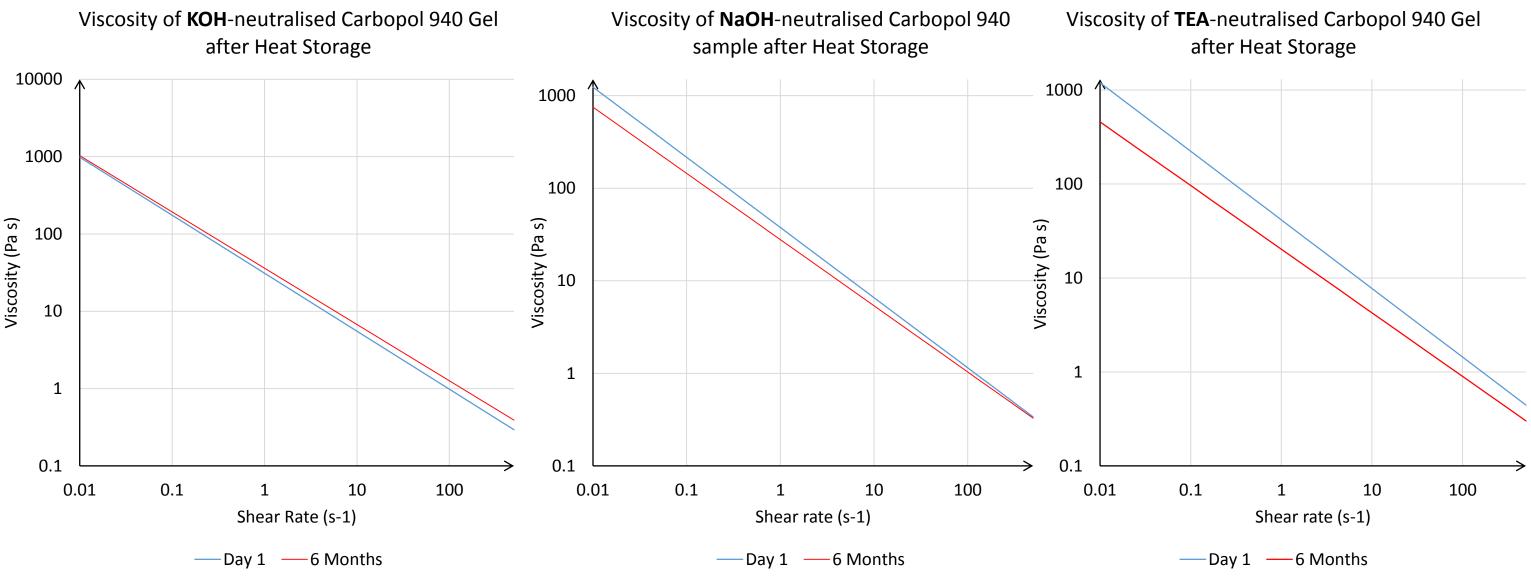
		K values			N values			
Neutrolicer						Neutraliser	% absolute Δ K Day 1 vs 3 months	
Neutraliser	Day 1	1 Month	3 Months	Day 1	1 Month	3 Months	Aminomethyl Propanol	6.13 %
Aminomethyl Propanol	35.42	34.46	33.25	0.298	0.299	0.301	Aminomethyl Propanedic	1.69 %
Aminomethyl Propanediol	33.20	33.25	33.76	0.275	0.286	0.284	Tromethamine	3.04 %
Tromethamine	31.93	31.34	32.90	0.259	0.291	0.280		5.04 %
Triethanolamine	41.52	39.73	36.31	0.274	0.277	0.297	Triethanolamine	12.55 %
КОН	31.07	32.07	28.54	0.250	0.264	0.284	КОН	8.14 %
NaOH	37.68	32.11	32.09	0.242	0.284	0.284	NaOH	14.84 %

Larger changes in K values for gels formulated with TEA, KOH, and NaOH when salt is present in the system

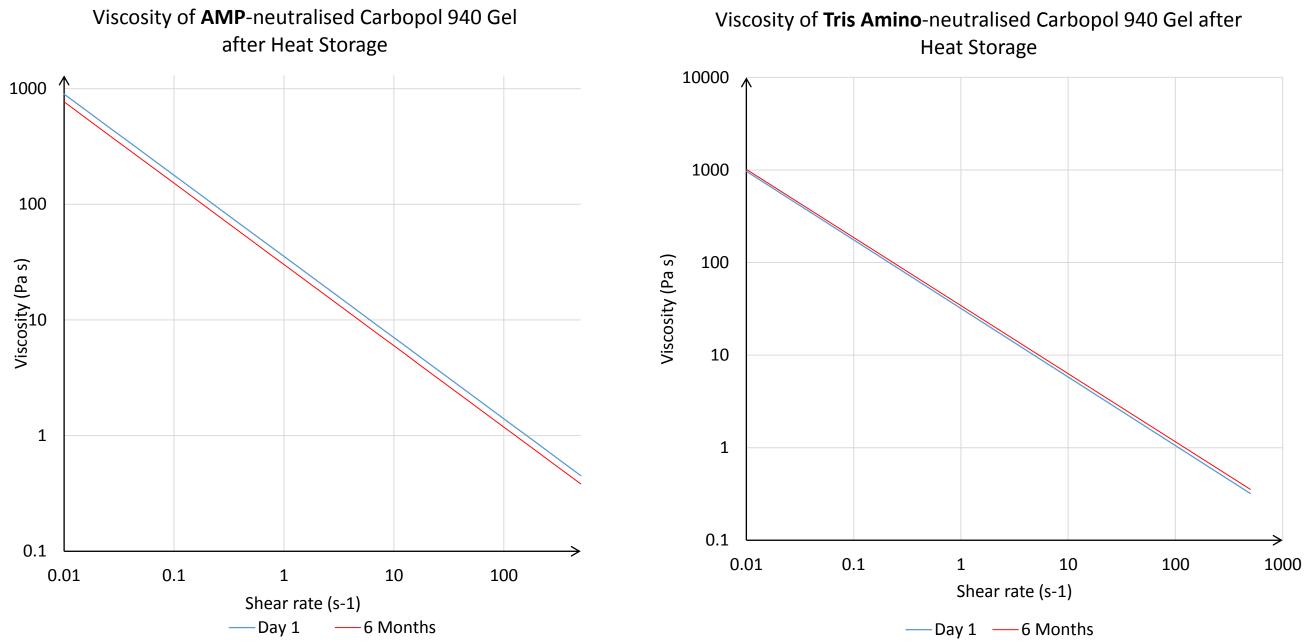
Rheological Analysis – Rotational Test

Heat storage samples (50 °C)

	K values				N values				
					k	1	Material	% absolute Δ K Day 1 vs 3 months	
Neutraliser	Day 1	1 Month	3 Months	Day 1	1 Month	3 Months	Aminomethyl Propanol	11.94 %	
AMP Ultra PC 2000	35.42	32.42	31.19	0.298	0.297	0.301	Aminomethyl Propanediol	5.90 %	
AMPD Ultra PC	33.20	30.47	31.24	0.275	0.294	0.293	Tromethamine	2.85 %	
Tris Amino	31.93	35.98	31.02	0.259	0.264	0.288			
TEA	41.52	35.27	30.58	0.274	0.288	0.295	Triethanolamine	26.35 %	
КОН	31.07	31.58	35.32	0.250	0.276	0.280	КОН	13.68 %	
NaOH	37.68	35.08	29.50	0.242	0.247	0.285	NaOH	21.71 %	

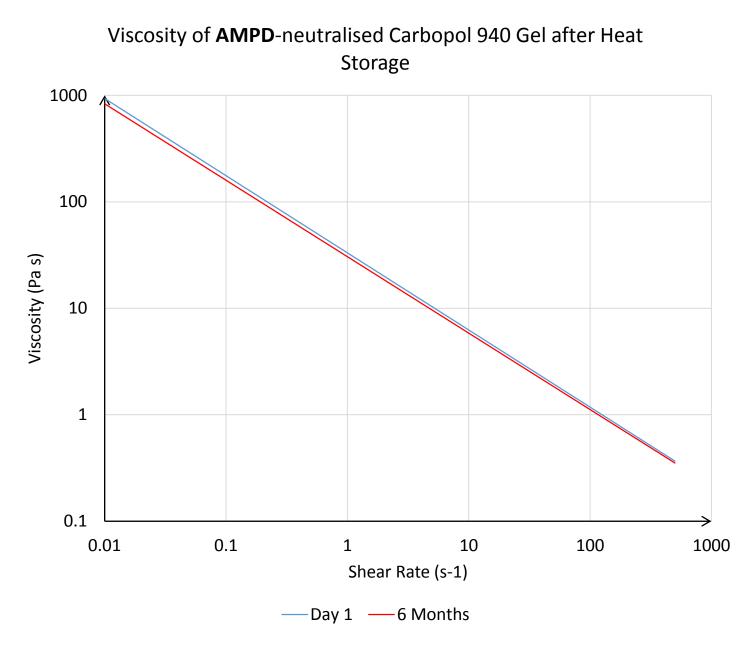

Larger changes in K values for gels formulated with TEA, KOH, and NaOH when salt is present in the system

Viscosity Profile of Heat Storage Samples


Larger changes in viscosities for gels formulated with TEA, KOH, and NaOH when salt is present in the system

WE MAKE THE BEST PERFORM BETTER.

Viscosity Profile of Heat Storage Samples


WE MAKE THE BEST PERFORM BETTER.

Viscosity Profile of Heat Storage Samples

- Largest changes in viscosity profiles for gels formulated with NaOH, KOH, or TEA when salt is present
- Highest consistency in viscosity profiles for gels formulated with AMP, Tris Amino, and AMPD when salt is present
- Overall product stability can be improved/enhanced with chemistries like AMP, Tris Amino, and AMPD.

Value for Skin & Body Care

- Reduce risk of nitrosamine formation
- High safety profile
- Good salt tolerance in water-based systems
- Improves / enhances overall product stability

Hand Sanitisers Application

Basic Ethanol Tolerance Test

- 600g of carbomer neutralized by different bases and loaded with 70% ethanol content
- Viscosities and clarities observed over 1 month for samples stored at room temperature or at 50 °C

Effect of Neutraliser on Ethanol Tolerance

NaOH and KOH based neutralisation have poor ethanol tolerance

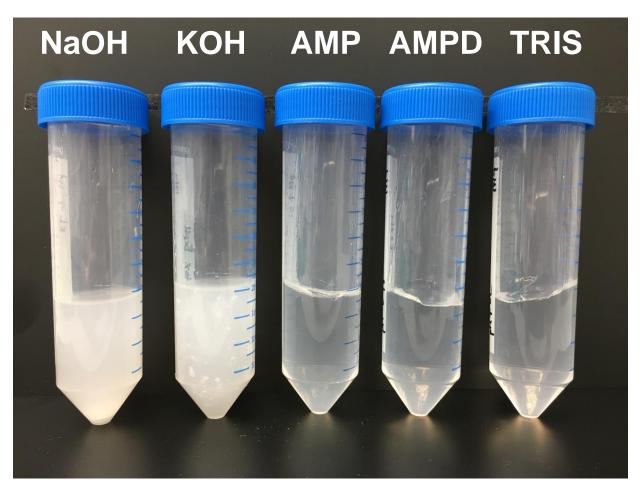
Table 1. Observations of the viscosity and clarity of samples immediately upon preparation and after 24 hours

_		Content of ethanol in gel (%, w/w)										
/		paration	after prep	24 h a		ion	preparat	ely after	mediat	Im	Neutralizer	
_ /	60	50	40	30	20	60	50	40	30	20		
	1111	+++		-	-		+++		++	-	NaOH	ganic ses
	+++	; ,,,, +;;;;	++	-	-		+++	++	-	-	КОН	lnor ba
	-	-	-	-	-	-	-	-	-	-	AMP	
	-	-	-	-	-	-	-	-	-	-	AMPD	rgani ases
	-	-	-	-	-	+	-	-	-	-	TRIS	٥٩
4	++	50 ++++	40 +++		20 - - - - -	60	50 +++	40			NaOH KOH AMP AMPD	Organic Inorganic bases bases

Shaded boxes indicate that samples did not possess satisfactory viscosity (i.e., sample can flow when the container was inverted)

+/- indicates the presence/absence of precipitates in the sample

Inorganic bases


- Precipitation when EtOH content \geq 30 %, w/w
- Poor gelling action

Organic bases

- No or minimal precipitates up to 60 %, w/w of EtOH
- Clear, viscous gels formed

Effect of Neutralisers on Ethanol Tolerance

Visual appearances of gels

Carbomer gels containing 40 %, w/w ethanol

Inorganic bases (NaOH, KOH)

- Precipitate formation
- Liquid-like for NaOH based neutralisation
- Gel-like clumps suspended in viscous liquid for KOH based neutralisation

Organic bases (AMP, AMPD and TRIS) - Clear and viscous gels formed

Viscosity Stability

	<viscosity> of final sample</viscosity>		of samples onth / cps	Percentage change in viscosity after 1 month		
Neutraliser	with 70% Ethanol at Day 1 / cps	Room temp.	50°C	Room temp.	50°C	
AMP Ultra PC 2000	4308	4890	4735	13.51%	9.91%	
AMPD Ultra PC	3002	3567	2955	18.82%	1.57%	
TEA	1905	3140	2502	64.83%	31.34%	

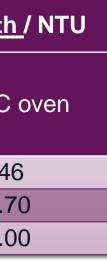
Note: These viscosity readings are measured using the T-spindle (TC).

- AMP and AMPD –based • neutralisations had excellent ethanol tolerance
- High initial viscosity achieved •
- Stable viscosity over room and heat ۲ storage

- TEA based neutralisation poor • at ethanol tolerance
- Poor viscosity building •
- Poor stability of viscosity •

angus.com

CHEMICAL COMPA



Clarity Stability

	Turbidity level of sample	Turbidity level after <u>1 month</u>	
Neutraliser	with 70% Ethanol at Day 1 / NTU	At room temperature	In 50°C
AMP Ultra PC 2000	7.95	7.94	6.4
AMPD Ultra PC	21.10	16.70	18.7
TEA	1083.00	21.50	61.0

- AMP based neutralisation showed the highest clarity and stability over time with 70% ethanol content
- Order of stability in clarity: AMP > AMPD > TEA

Physical Appearances of Gels After 1 month @ 50 °C Initial

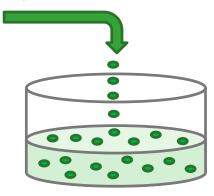
AMPD TEA AMP AMPD AMP

 AMP-based neutralisation confers highest stability for viscosity and clarity in the presence of ethanol

TEA

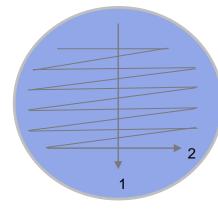
Value for Hand Sanitizers

- Reduce risk of nitrosamine formation
- High safety profile
- Enable formulation of hand sanitizers with high percentage of ethanol
- Rapid and easy processability
- Fully transparent gel
- Stable over long term storage


Enhancement of Preservation System (Lotion Examples)

Challenge Test Methodology

Inoculation on Day 0, 7 and 14


Bacteria: 5x10⁶ - 5x10⁷ CFU/mL Fungi: 5x10⁵ - 5x10⁶ CFU/mL

Sample Incubation at 25°C. Sampling/Streaking on

Day 2, 7, 14, 21 and 28.

Bacteria on Tryptone Soya Agar Fungi on Sabouraud Dextrose Agar

Streaking sample on agar

Streak Plate Incubation Bacteria: 2 days at 37°C Fungi: 2 – 7 days at 30°C

Plating Results

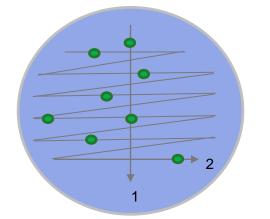
No viable colony detected

(√)

1–10 colonies (\checkmark)

11-20 colonies (×)

21-50 colonies (×)


51-100 colonies (×)

>100 colonies (×)

Sample formulation to be tested

WE MAKE THE BEST PERFORM BETTER.

Viable organisms form colonies on agar

Score	Approximate CFU/mL Sample	
0	<1 x 10 ²	
1	1 x 10 ² - 1 x 10 ³	
2	1.1 x 10 ³ - 2 x 10 ³	
3	2.1 x 10 ³ - 5 x 10 ³	
4	5.1 x 10 ³ - 1 x 10 ⁴	
5	>1 x 10 ⁴	

Enhancement of 1,2-hexanediol

Lotion samples were prepared according to the formulation below.

1,2-hexanediol was post-added to the formulation at 1.0%, 1.5% and 2.0% prior to testing.

Phase	INCI Name —		Wt%		
FlidSe		AMP	ТА	NaOH	
	Water	69.62	69.48	69.13	
А	EDTA	0.02	0.02	0.02	
	Acrylates/C10-30 Alkyl Acrylate Crosspolymer	0.50	0.50	0.50	
	Butylene Glycol	3.00	3.00	3.00	
	Glycerin	2.00	2.00	2.00	
В	Glyceryl Stearate	3.00	3.00	3.00	
	Cetyl Ethylhexanoate	12.50	12.50	12.50	
	Cyclypentasiloxane, Dimethicone Crosspolymer	4.00	4.00	4.00	
	Water	5.00	5.00	5.00	
С	Aminomethylpropanol (AMP™ Ultra PC 2000)	0.36	-	-	
	Tromethamine (TRIS AMINO™ ULTRA PC)	-	0.50	-	
	Sodium Hydroxide	-	-	0.85	
	Potassium Hydroxide	-	-	-	
	TOTAL	100.00	100.00	100.00	

WE MAKE THE BEST PERFORM BETTER.

КОН
68.70
0.02
0.50
3.00
2.00
3.00
12.50
4.00
5.00
-
-
-
1.28
100.00

Enhancement of 1,2-hexanediol

No.	Sample Description	Bacterial Challenge	Fungal Challenge
1	AMP (Blank)	x	x
2	AMP + 1.0% 1,2-hexanediol	×	×
3	AMP + 1.5% 1,2-hexanediol	\checkmark	\checkmark
4	AMP + 2.0% 1,2-hexanediol	\checkmark	\checkmark
5	TRIS AMINO (Blank)	x	x
6	TRIS AMINO + 1.0% 1,2-hexanediol	×	x
7	TRIS AMINO + 1.5% 1,2-hexanediol	\checkmark	\checkmark
8	TRIS AMINO + 2.0% 1,2-hexanediol	\checkmark	\checkmark
9	NaOH (Blank)	x	×
10	NaOH + 1.0% 1,2-hexanediol	×	×
11	NaOH + 1.5% 1,2-hexanediol	×	\checkmark
12	NaOH + 2.0% 1,2-hexanediol	\checkmark	\checkmark
13	KOH (Blank)	×	x
14	KOH + 1.0% 1,2-hexanediol	×	x
15	KOH + 1.5% 1,2-hexanediol	×	\checkmark
16	KOH + 2.0% 1,2-hexanediol	\checkmark	\checkmark

 Lotion samples formulated with AMP and TRIS AMINO were able to withstand both bacterial and fungal challenge with just 1.5% 1,2-hexanediol Formulations with NaOH and KOH could

not.

Enhancement of Pentylene Glycol

- Lotion samples were prepared according to the formulation below.
- Pentylene glycol was post-added to the formulation at 3.0%, 4.0%, 4.5% and 5.0% prior to testing.

Phase	INCI Name	Wt%	
		AMP	
	Water	69.62	
A	EDTA	0.02	
	Acrylates/C10-30 Alkyl Acrylate Crosspolymer	0.50	
	Butylene Glycol	3.00	
	Glycerin	2.00	
D	Glyceryl Stearate	3.00	
В	Cetyl Ethylhexanoate	12.50	
	Cyclypentasiloxane, Dimethicone Crosspolymer	4.00	
С	Water	5.00	
	Aminomethylpropanol (AMP™ Ultra PC 2000)	0.36	
	Potassium Hydroxide	-	
	TOTAL	100.00	

WE MAKE THE BEST PERFORM BETTER

КОН	
68.70	
0.02	
0.50	
3.00	
2.00	
3.00	
12.50	
4.00	
5.00	
-	
1.28	
100.00	

Enhancement of Pentylene Glycol

No.	Sample Description	Bacterial Challenge	Fungal Challenge
1	AMP (Blank)	×	×
2	AMP + 3.0% Pentylene Glycol	x	×
3	AMP + 4.0% Pentylene Glycol	\checkmark	\checkmark
4	AMP + 4.5% Pentylene Glycol	\checkmark	\checkmark
5	AMP + 5.0% Pentylene Glycol	\checkmark	\checkmark
6	KOH (Blank)	x	×
7	KOH + 3.0% Pentylene Glycol	x	×
8	KOH + 4.0% Pentylene Glycol	×	×
9	KOH + 4.5% Pentylene Glycol	\checkmark	\checkmark
10	KOH + 5.0% Pentylene Glycol	\checkmark	\checkmark

 Lotion sample formulated with AMP was able to withstand both bacterial and fungal challenge with just 4.0% pentylene glycol

 Formulation with KOH could not.

Value for Formulations

- Reduce risk of nitrosamine formation
- High safety profile
- Enhancement of preservation systems
- Works well in 'preservative-free' systems
- Reduced dosages to achieve similar protection

WE MAKE THE BEST PERFORM BETTER.

Thank You

